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Where Are We Now?
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Kola, I, Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates?
Nature Reviews Drug Discovery, 3, 711-715



Old Stuff?
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“We found that approximately one in ten (10.4%, 
N = 5,820) of all indication development paths 
in phase 1 were approved by FDA“

Hay, M, Thomas, D, Craighead, J, Economides, C, Rosenthal, J (2014). Clinical development success rates for investigational drugs.
Nature Biotechnology, 32, 40-51 



Biomarkers to the Rescue…
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TheGuardian, August 2010

Poste G  2011 Bring on the biomarkers. Nature 469 156-157



From Qualitative to Quantitative
We have to move from qualitative to quantitative decision making in biomarker 
identification and development

• Find answers to questions, instead of finding questions to answers
• Clear hypotheses
• Account for false-positive findings
• Appropriate validation / cross-validation

• Estimations instead of p-values

• More interdisciplinary work! 

• Consider use of Bayesian Techniques in biomarker identification process
• Two examples today:

• Enrichment designs
• Biomarker dose / time - response relations
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Enrichment Designs - Background
Targeted clinical trials:

• Evaluation of efficacy and safety for patient with certain (biomarker) 
characteristics – “biomarker positive patients”

• Evaluation of best treatment regimen depending on prognostics of clinical 
outcome

• Investigation of association of treatment effect with test results
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Challenges
High degree of certainty that relevant drug response only occurs in “marker 
positive” patients

• Exclusion of test negative patients prevents description of test characteristics 
(sensitivity, specificity) 

• Effects on drug development:
• Lower number of patients necessary, 
• but potentially longer recruitment times, 
• and potentially higher costs (screening)

Further, more generic, challenges:

• Estimation of recruitment rates

• Estimation of prevalence
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Example
Assume that we need 50 marker (test) positive patients, and the recruitment rate 
is 10 patients per month. Depending on the prevalence, how many patients are 
we expected to screen, and what is the accrual time?
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Prevalence ntested Accrual time
1 50 5

0.8 63 6.25
0.5 100 10
0.3 167 16.7



Notation
Let

• Nt
+ denote the recruitment process for the marker (test) positive patients, 

respectively

• n+ be the required number of marker (test) positive patients

• λ > 0 be the recruitment rate in the unselected population

• 0< θ ≤1 be the prevalence of the marker (test) positive population

• T+(n) denote the accrual time for n patients in the marker positive recruitment 
process, respectively
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Process with Fixed Parameters
Let λ and θ be fixed and known
Then

• Nt
+ is a Poisson process with parameter θλ

• Therefore, the jump-times (waiting times) of the process are i.i.d. 
exponentially distributed with rate θλ

• Thus, T+(n+) ~ Γ(n+, θλ)
• (sum of n+ independent exponentially distributed variables, each with rate parameter 

θλ)
• E(T+(n+)) = n+/ θλ, Var(T+(n+)) = n+/ (θλ)2
• = Erlangen distribution, as n+ is an integer.
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Costs
Let ntested be the number needed to be screened in order to obtain n+ patients, 
given prevalence θ

• Expected n+/ θ

• ntested ~ NegBin(n+, θ)

• Example:
• n+ = 35, θ = 0.2; 

expected ntested = 35/0.2 = 175
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Prediction
• Use Gamma(n+, θλ) distribution to obtain prediction intervals for T+(n+)

• Use NegBin(n+, θ) to obtain information on number of patients that are 
screened, and derive associated costs from this

• In SAS®  use the GAMINV, and/or QUANTILE function. 
• Caveat: parameterization of the Gamma distribution for GAMMA and GAMINV 

function (no scale parameters!)
• Note Gamma distribution in SAS based on waiting times (thus, uses scale 

parameters, not rate parameters!)
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Example with Process Variability
Again, we need 50 marker (test) positive patients, and the recruitment rate is 10 
patients per month. 
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Prevalence ntested Accrual time T(n+)
1 50 -- 5 (3.90, 6,22)

0.8 63 [56, 69] 6.25 (4.87, 7.77)
0.5 100 [84, 117] 10 (7.79, 12.43)
0.3 167 [136, 201] 16.7 (12.99, 20.72)

Numbers are estimates and 90% prediction intervals



Using Random Recruitment Rate
Now, assume that λ ~ Γ(α, β), and θ fixed and known

• Easy interpretation: E(λ) = α / β; Var(λ) = α / β²
• E.g. assume expected recruitment rate e, and variance v:

β = e/v, α = e²/v = 1 / cv² of recruitment rates
• Now, T+(n+) ~ Γ(n+, θΓ(α,β))

• This is equivalent to:
• T+(n+) ~ (β/θ) Γ(n+, 1) / Γ(α,1)

since Γ(α,β) = Γ(α,1) / β 
aka Type IV Pearson distribution

• Extension of Negative Binomial Distribution on real numbers
• Expected value: n+ β / θ (α -1)  for α > 1 
• Variance: β²n+(n++α-1) / θ²(α-1)²(α-2), for α > 2
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Prediction Intervals
For the prediction interval of the recruitment time, we use a large sample 
approximation:

•

For the number of patients needed to screen, same as before

• because ntested ~ NB(n+, θ), and thus independent from λ
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Random Recruitment Rates
Rate λ = 10, different variances v: Gamma distributions

v=1;   Γ(100,10)
v=5;   Γ(20, 2)
v=10; Γ(10, 1)
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Example Random Recruitment Rates
Assume n+ = 50, rate λ around 10, different variances v, different prevalences θ
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v θ α β Expected 
T+(n+)

90% 
Prediction Interval

1 1.0  100 10  5.1 (3.6, 6.5)
1 0.8  100 10  6.3 (4.5, 8.1)
1 0.5  100 10  10.1 (7.2, 13.0)
1 0.3  100 10  16.8 (12.0, 21.7)
5 1.0  20 2  5.3 (2.9, 7.7)
5 0.8  20 2  6.6 (3.6, 9.6)
5 0.5  20 2  10.5 (5.7, 15.3)
5 0.3  20 2  17.5 (9.6, 25.5)

10 1.0  10 1  5.6 (2.0, 9.1)
10 0.8  10 1  6.9 (2.6, 11.3)
10 0.5  10 1  11.1 (4.1, 18.1)
10 0.3  10 1  18.5 (6.8, 30.2)



Thoughts about the Prevalence
In the previous models, it was assumed that the prevalence θ is known and fixed.

• Often estimated from small studies

• Use Bayesian methods to derive (posterior) “belief in the estimated 
prevalence θ 

• Prior may be non-informative or informative. Quantify the prior belief by Beta-
Distribution.

• Beta(, β), 
where
 = n * prior and 
β = n * (1-prior);
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Recruitment using Random 
Prevalence
.Now, use Bayesian framework to quantify uncertainty about the prevalence

• Using non-informative prior, and p(θ) = a/b, then θ|data ~ Beta(a+1, b+1)

We incorporate that into our previous recruitment model, and now use simulation 
to determine the expected recruitment time, and expected number of patients to 
be screened

• Results based on 10,000 simulations
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Example Recruitment Time
Assume n+ = 50, accrual rate around 10, different prevalences θ, different sizes 
of prior trial to estimate θ
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v   β θ Prior Size  
Median

Time   
5%, 95% 

pctl
5  20   2   0.8  10     6.8    (4.2, 11.9)
5  20   2   0.8  50     6.5    (4.1, 10.3)
5  20   2   0.5  10     10.3    (5.7, 21.3)
5  20   2   0.5  50     10.2    (6.3, 17.1)
5  20   2   0.3  10     15.9    (7.8, 41.7)
5  20   2   0.3  50     16.7    (9.7, 29.7)



Example Screening
Assume n+ = 50, accrual rate around 10, different prevalences θ, different sizes 
of prior trial to estimate θ
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v   β θ Prior Size  
Median
ntested

5%, 95% 
pctl

5  20   2   0.8  10     65.0  (53.0, 97.0)
5  20   2   0.8  50     63.0  (55.0, 76.0)
5  20   2   0.5  10     100.0  (67.0, 187.0)
5  20   2   0.5  50     100.0  (77.0, 136.0)
5  20   2   0.3  10     154.0  (86.0, 377.0)
5  20   2   0.3  50     163.0  (113.0, 251.0)



Summary Accrual Time
N+=50, accrual rate λ ≈10
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v   β θ
Prior 
Size  

Median
Time   

“Likely
Range”

-- -- -- 0.5 -- 10.0 (7.8, 12.4)
1 100 10 0.5 -- 10.1 (7.2, 13.0)
1 100 10 0.5 50 10.0   (7.0, 14.4)
1  100 10 0.5 10 10.2 (6.2, 19.7)
5 20 2 0.5 -- 10.5 (5.7, 15.3)
5  20 2 0.5 50 10.2    (6.3, 17.1)
5  20 2 0.5 10 10.3    (5.7, 21.3)
10 10 1 0.5 -- 11.1 (4.1, 18.1)
10 10 1 0.5 50 10.5    (5.7, 20.5)
10  10 1 0.5 10 10.6    (5.3, 24.5)



Summary Screening / Costs
N+ = 50
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θ Prior Size  “expected ntested” “likely range”
0.5 -- 100 (84, 117)
0.5  10     100  (67, 187)
0.5  50     100  (77, 136)



Further Challenges
• Inclusion of Bayesian models for accrual

• ~IG(nP, TP), where T is expected time to accrue n patients, P is confidence level for 
accrual

• Eg. Gajewski BJ, Simon SD, Carlson S (2008), "Predicting accrual in clinical trials 
with Bayesian posterior predictive distributions“, Statistics in Medicine 27(13); 2328-
2340.

• Inhomogeneous Poisson models
• Multiple centers, time-dependent λt

• Other recruitment models
• Using feedback mechanisms: INGARCH(1,1) process, as studied by Ferland, Latour, 

and Oraichi (2006), extended by Fried and Foskianos (2010)
• Nt ~Pois(θ λt)

λt = β0 + β1 λt-1 + α1Nt-1
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Dose – Response / Expression
• Interest to classify potential biomarkers according to dose-expression profiles

• Any relationship
• Shape of profile

• Order constraints: higher (lower) expression as dose increases
• Monotone increases / decreases
• No parametric assumptions about dose – expression profiles
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Dose – Response
Dose – Biomarker Expression Relation(s)

• Maximum Test

• Bayesian approach
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(1)  (10)  (19) 

(2)  (11)  (20) 

(3)  (12)  (22) 

(4)  (13)  (22) 

(5)  (14 – null model)  (23) 

(6)  (15)  (24) 

(7)  (16)  (25) 

(8)  (17)  (26) 

(9)  (18)  (27) 

 



Dose Response Example
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Otava M., Shkedy Z., Lin D., Göhlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose–Response Modeling Under Simple 
Order Restrictions Using Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research, 6:3, 252-262.
Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence.
Otava M. (2013). Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions. Bayes2013, Rotterdam.



Monotone Dose-Response
Order-restricted alternative as an example:

• ANOVA model: Yij=μi + ij, ij~N(0,σ²), i=0,…3, j=1,…, ni

• H0: μ0 = μ1 = μ2 = μ3 versus
Hdown: μ0  μ1  μ2  μ3 with at least one strict inequality

• Decompose into 2K – 1 sub-alternatives

• K=3: 7 sub-alternatives (downward trend!)
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Example: Biomarker
Assume possible downward trend. 

• Re-parametrisation:

• Use priors and hyperpriors as discussed by Otava
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Priors and Hyperpriors
As priors, we have

• ,଴ߟ଴~ܰሺߤ ଴ଶሻߪ

• ܰ~௜ߚ ,ఉ೔ߟ ఉ೔ߪ
ଶ ܫ 0, ܣ ;	 A denotes the expected difference in the response

• ௜ሻߨሺ݈݈݅ݑ݋݊ݎ݁ܤ~௜ܫ

And hyperpriors

• ሺ0,1ሻ݉ݎ݋݂ܷ݅݊~௜ߨ

• ,଴ߟ ,ఉ೔~ܰሺ0ߟ 10
଺ሻ

• ,଴ଶߪ ఉ೔ߪ
ଶ ,ሺ10ିଷ߁݅~ 10ିଷሻ

If we now define ݃ ൌ ∑ ௜2௜ିଵ௄ܫ
௜ୀଵ , the posterior distribution of g describes the 

distribution of the monotone dose-response shapes.

Page 32 • Dr. Richardus Vonk • BASS XXII 2015



SAS PROC MCMC
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Results
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0.1859 0.6058 0.0546

0.06140.03590.0483

0.0059 0.0022



Discussion of Methods
• Can (easily) be extended to be used with correlated data: 

•

• Only compound symmetry 
• Effect of truncation: 

• ܰ~௜ߚ ,ఉ೔ߟ ఉ೔ߪ
ଶ ܫ 0, ܣ ;	 A denotes the expected difference in the response

• Down-turn / Up-turn protection may be needed
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Truncation
• Effect of truncation: 

ܰ~௜ߚ ,ఉ೔ߟ ఉ೔ߪ
ଶ ܫ 0, ܣ ;	 A denotes the expected difference in the response

•

• Derive from data? Empirical Bayes approach?
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Otava M., Shkedy Z., Lin D., Göhlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose–Response Modeling Under Simple 
Order Restrictions Using Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research, 6:3, 252-262.



Effect of Truncation
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Effect of Truncation (2)
The results are highly sensitive to the specification of the truncation factor.

• It is essential to include a sensible value of A, which should reflect an upper 
limit of the expected results. 

• This was investigated by O‘Hara and Sillanpää (2009), who describe ‘The 
MCMC algorithm to fit the model does not require any tuning, but when Ij = 0, 
the updated value of βj is sampled from the full conditional distribution, which 
is its prior distribution. Mixing will be poor if this is too vague, as the sampled 
values of βj will only rarely be in the region where θj has high posterior 
support, so the sampler will only rarely flip from Ij = 0 to Ij = 1.’

• The truncation factor A can (should?) be estimated from the data
• Empirical Bayes approach (?) 
• 2 x range? 
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Up-Turn Protection - Example
Consider the following marker, with a possible up-turn effect at the last dose:
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Up-Turn Protection – Results (1)
Result:
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g A=350 A=400
0 1 (  0.15%)
1 1899 (94.95%) 197 (95.85%)
3 68 (  3.40%) 55 (  2.75%)

5 30  (  1.50%) 28 (  1.40%)

7 2  (  0.10%)



Up-Turn Protection
• Introduce additional parameters I4, beta4, … to reflect up-turn:

•

• Results:  

Page 41 • Dr. Richardus Vonk • BASS XXII 2015

g A=350
1 26 (  1.30%)
9 1701 (85.05%)

11 273 (13.65%)



Discussion
• Method enables to address multiple perspectives simultaneously

• Compare with max-t tests
• Implement general down-turn / up-turn protection for the method to be useful 

for biomarker selection

• (Implement permutation test) 

• Computationally intensive!
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Implementation
• Rather high acceptance of Bayesian methods in Early Clinical Development

• Build on this also for early biomarker development / biomarker detection
• Standard “displays” / methods to ensure understanding

• High level of interaction needed
(specification of questions, determination of priors, … )
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