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Where Are We Now?
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Kola, I, Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? I M
Nature Reviews Drug Discovery, 3, 711-715 S of Baveioamant
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Old Stuff?
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Figure 1 Phase success and LOA rates. (a) Phase success rates for leat “We found that apprOX|mate|y one |n ten (1 04%,
and all indications. The rates represent the probability that a drug will . . .
N = 5,820) of all indication development paths

successfully advance to the next phase. (b) LOA from phase 1 for lead and

all indications. Rates denote the probability of FDA approval for drugs in .
in phase 1 were approved by FDA"

phase 1 development.

Hay, M, Thomas, D, Craighead, J, Economides, C, Rosenthal, J (2014). Clinical development success rates for investigational drugs.

Nature Biotechnology, 32, 40-51
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Biomarkers to the Rescue... R

Biomarkers: How good a cancer test are
they?

Cancer biomarkers have changed the way we detect and treat the disease. F
they all they're cracked up to be?

Barely a week goes by without headlines blaring some new way of understa
detecting or treating cancer. It could be a newly identified gene or a protein
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The lack of standardization in the colloction ar
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should be replaced by

between diseases and changes in biom:

kers, the ability of physicians to diagnc
disease and tailor treatments to individu;
would be radically improved'. Howew
research into biomarkers — disease-ass
ciated molecular changes in body tissu
and fluids — hasn't vet delivered on :
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Leveling the Playing Field: Bringing Development of
Biomarkers and Molecular Diagnostics up to the Standards
for Drug Development

George Poste', David P. Carbone®, David R. Parkinson®, Jaap Verweij*®, Stephen M. Hewitt®, and
J. Milbum Jessup”

Abstract

Molecular diagnostics are becoming increasingly important in clinical research to stratify or identify
molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, and to assess
early response to therapy or monitor patients. Molecular diagnostics can also be used to identify the
pharmacogenetic risk of adverse drug reactions. The articles in this CCR Focus section on molecular diagnosis
describe the development and use of markers to guide medical decisions regarding cancer patients. They
define sources of preanalytic variability that need to be minimized, as well as the regulatory and financial
challenges involved in developing diagnostics and integrating them into clinical practice. They also outline a
National Cancer Institute program to assist diagnostic development. Molecular diagnostic clinical tests
require rigor in their development and clinical validation, with sensitivity, specificity, and wvalidity
comparable to those required for the development of therapeutics. These diagnostics must be offered at
a realistic cost that reflects both their clinical value and the costs associated with their development. When
genome-sequencing technologies move into the clinic, they must be integrated with and traceable to current
technology because they may identify more efficient and accurate approaches to drug development. In
addition, regulators may define progressive drug approval for companion diagnostics that requires further
evidence regarding efficacy and safety before full approval can be achieved. One way to accomplish this is to
emphasize phase IV postmarketing, hypothesis-driven clinical trials with biological characterization that
would permit an accurate definition of the association of low-prevalence gene alterations with toxicity or
response in large cohorts. Clin Cancer Res; 18(6); 1515-23. ©2012 AACR.
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From Qualitative to Quantitative 5

We have to move from qualitative to quantitative decision making in biomarker
identification and development

* Find answers to questions, instead of finding questions to answers

e Clear hypotheses
* Account for false-positive findings
* Appropriate validation / cross-validation

* Estimations instead of p-values

* More interdisciplinary work!

* Consider use of Bayesian Techniques in biomarker identification process
* Two examples today:

* Enrichment designs

* Biomarker dose / time - response relations
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Enrichment Designs - Background \&

Targeted clinical trials:

* Evaluation of efficacy and safety for patient with certain (biomarker)
characteristics — “biomarker positive patients”

* Evaluation of best treatment regimen depending on prognostics of clinical
outcome

* Investigation of association of treatment effect with test results

Z Treatment
Q —>
7))
-9 —»
c —- Conwol
©
I
C
Q0
© L
o
< Enrichment design
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Challenges (&

High degree of certainty that relevant drug response only occurs in “marker
positive” patients

* Exclusion of test negative patients prevents description of test characteristics
(sensitivity, specificity)

* Effects on drug development:

* Lower number of patients necessary,
* but potentially longer recruitment times,
* and potentially higher costs (screening)

Further, more generic, challenges:
* Estimation of recruitment rates

* Estimation of prevalence
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Example 5

Assume that we need 50 marker (test) positive patients, and the recruitment rate

is 10 patients per month. Depending on the prevalence, how many patients are
we expected to screen, and what is the accrual time?

| Prevalence | niua | Accrualtime _
1 50 S

0.8 63 6.25
0.5 100 10
0.3 167 16.7

DATA examplel;
n plus = 30;
lambda = 10;
DO theta = 1, 0.8, 0.5, 0.3;
n_screen = n_plus i/ thetad

time = n plus / (theta*lambda);
OUTPUT ;
END;
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Notation EER

Let

* N;* denote the recruitment process for the marker (test) positive patients,
respectively

* n* be the required number of marker (test) positive patients

* A >0 be the recruitment rate in the unselected population

* 0< 0 =1 be the prevalence of the marker (test) positive population

* T*(n) denote the accrual time for n patients in the marker positive recruitment
process, respectively
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Process with Fixed Parameters 5

Let A and 0 be fixed and known

Then
* N," is a Poisson process with parameter 6A

* Therefore, the jump-times (waiting times) of the process are i.i.d.
exponentially distributed with rate A

* Thus, T*(n*) ~ '(n*, BA)
* (sum of n* independent exponentially distributed variables, each with rate parameter

OA)
*  E(T*(n%)) = n*/ BA, Var(T*(n*)) = n*/ (BA)2
* = Erlangen distribution, as n* is an integer.
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Costs EER

Let ni g P€ the number needed to be screened in order to obtain n* patients,
given prevalence 6

* Expected n*/ 0

0.016

* Nt ~ NEgBIn(n®, 6) oo e\
2 ol
° Example: 2 o
-Q i
* nt=35,60=0.2; 5 o
expected Ny eq = 35/0.2 = 175
= N

DATA tt;
theta = 0.2; n_plus = 35;
DO x = 0 TO 350;
probnb=PDF ("NEGE", x, theta, n_plus);
n_tested = x + n plus;
CUTPUT;
END;
RUN

T T T T
o 100 200 300 400

ntested

symboll v=circle height=0.3;
PROC GPLOT:

PLOT probnb * n_tested;
RUN:QUIT;
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Prediction &

* Use Gamma(n*, 6A) distribution to obtain prediction intervals for T*(n*)

* Use NegBin(n*, 0) to obtain information on number of patients that are
screened, and derive associated costs from this

* |n SAS® use the GAMINV, and/or QUANTILE function.

* Caveat: parameterization of the Gamma distribution for GAMMA and GAMINV

function (no scale parameters!)
* Note Gamma distribution in SAS based on waiting times (thus, uses scale

parameters, not rate parameters!)
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Example with Process Variability ¢

Again, we need 50 marker (test) positive patients, and the recruitment rate is 10
patients per month.

Prevalence | Niues | Accrual time T(n")

1 50 - 5 (3.90, 6,22)
0.8 63 [56, 69] 6.25 (4.87,7.77)
0.5 100 (84, 117] 10 (7.79, 12.43)
0.3 167 [136, 201] 16.7 (12.99, 20.72)

Numbers are estimates and 90% prediction intervals

DATA example;
n_plus = 50;
lambda = 10;
DO theta = 1, 0.8, 0.5, 0.3;
n_screen = n_plus / theta;
11 _screen = n_plus + QUANTILE ("NEGEIN", 0.05, theta, n_plus);
ul_screen = n_plus + QUANTILE ("NEGEIN", 0.95, theta, n_plus);

time = n_plus / (theta*lambda):

11_time = QUANTILE ("GAMMA", 0.05, n_plus, 1/(theta*lambda)):;
ul_time = QUANTILE ("GAEMMA", 0.95, n_plus, 1/(theta*lambda)):
spread time = ul time - 11 time;
CUTFUT;

END:

RUN;

Page 15 « Dr. Richardus Vonk » BASS XXII 2015 Bayer HealthCare




Using Random Recruitment Rate &

Now, assume that A ~ I'(a, B), and 08 fixed and known

* Easy interpretation: E(A\) = a/3; Var(A) = a/ B?
* E.g. assume expected recruitment rate e, and variance v:
B =elv, a=e?*v=1/cv?of recruitment rates

* Now, T*(n*) ~I'(n*, 6I'(a,B))
* This is equivalent to:

e T*(n*)~(B/O)(n*, 1)/ (a,1)
since(a,B)=T(a,1)/p
aka Type |V Pearson distribution
* Extension of Negative Binomial Distribution on real numbers
* Expected value:n* /06 (a-1) fora> 1
* Variance: *n*(n*+a-1) / 8%(a-1)*(a-2), fora > 2
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Prediction Intervals 5

For the prediction interval of the recruitment time, we use a large sample
approximation:

ng +Z\/ pnin+a-1) }

. P|(T+(n)):[0(a_1)_ (92(05—1)2(05—2)

For the number of patients needed to screen, same as before

* because n, .4 ~ NB(n*, ), and thus independent from A
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Random Recruitment Rates 5

Rate A = 10, different variances v: Gamma distributions

0.42 1
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22
0.20
018
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00 —_I

0 10 20 30

v=1; [(100,10)
v=5; [(20, 2)
v=10; (10, 1)
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Example Random Recruitment Rates R

Assume n+ = 50, rate A around 10, different variances v, different prevalences 6

Expected 90%
T*(n*) Prediction Interval

1 100 5.1 (3.6, 6.5)
1 0.8 100 10 6.3 (4.5, 8.1)
1 0.5 100 10 10.1 (7.2, 13.0)
1 0.3 100 10 16.8 (12.0, 21.7)
5 1.0 20 2 5.3 (2.9, 7.7)
5 0.8 20 2 6.6 (3.6, 9.6)
5 0.5 20 2 10.5 (5.7, 15.3)
5 0.3 20 2 17.5 (9.6, 25.5)

10 1.0 10 1 5.6 (2.0, 9.1)

10 0.8 10 1 6.9 (2.6, 11.3)

10 0.5 10 1 11.1 (4.1, 18.1)

10 0.3 10 1 18.5 (6.8, 30.2)
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Thoughts about the Prevalence N\

In the previous models, it was assumed that the prevalence 0 is known and fixed.
* Often estimated from small studies

* Use Bayesian methods to derive (posterior) “belief in the estimated
prevalence 0

* Prior may be non-informative or informative. Quantify the prior belief by Beta-
Distribution.

10
* Beta(a, B), o]
where 8
o = n * prior and "
B =n*(1-prior); i
3
1
0id S~ o \
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Recruitment using Random BA
E
Prevalence R

.Now, use Bayesian framework to quantify uncertainty about the prevalence
* Using non-informative prior, and p(8) = a/b, then B|data ~ Beta(a+1, b+1)

We incorporate that into our previous recruitment model, and now use simulation
to determine the expected recruitment time, and expected number of patients to
be screened

Do v= 1, 5, 10;
. . DO theta = 1, 0.8, 0.5, 0.3;
* Results based on 10,000 simulations ™ so siossize = 10, s0:
DO tryout = 1 TO 10000;
alpha = e*e/v;
heta = a/v;
lambda = RAND("GAMMA", alpha)/beta;
thetaZ2 = RAND("BETA", priorsize*theta + 1, priorsize#® (l1-theta) + 1):
obz = 0; time=0; nscreen = 0;
DO UNTIL (obs=nobs):
IF theta2 < 1 THEW x = RANBIN (-1, 1, theta2):
ELSE =x=1;
nscreen = nscreen + 1;

time = time + EAND("exponential™)/lambda;
IF x=1 THEN obs = obs + 1;

END;

CUTEUT;

END;
EvD:
END;
END:
RUH;
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Example Recruitment Time 5

Assume n* = 50, accrual rate around 10, different prevalences 0, different sizes
of prior trial to estimate 6

L L e e
3 Time octl
20 10 6.8

5 2 0.8 | (4.2, 11.9)
5 20 2 0.8 50 6.5 (4.1, 10.3)
5 20 2 0.5 10 10.3 (5.7, 21.3)
5 20 2 0.5 50 10.2 (6.3, 17.1)
5 20 2 0.3 10 15.9 (7.8, 41.7)
5 20 2 0.3 50 16.7 (9.7, 29.7)
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Example Screening

B
A

BAYER
E
R

Assume n* = 50, accrual rate around 10, different prevalences 0, different sizes

of prior trial to estimate 6

v

5

5 20
5 20
5 20
5 20
5 20

NN DNDNDNDNDDN

0.8
0.5
0.5
0.3
0.3

50
10
50
10
50

65 O
63.0
100.0
100.0
154.0
163.0

5%, 95%
octl
(53.0, 97.0)

(55.0, 76.0)

(67.0, 187.0)
(77.0, 136.0)
(86.0, 377.0)
(113.0, 251.0)
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. EER
Summary Accrual Time R

N+=50, accrual rate A =10

I P
\'; 3 Time Range”
- . - 05 -

10.0 (7.8, 12.4)
1 100 10 0.5 - 10.1 (7.2, 13.0)
1 100 10 0.5 50 10.0 (7.0, 14.4)
1 100 10 0.5 10 10.2 (6.2,19.7)
5 20 2 0.5 - 10.5 (5.7, 15.3)
5 20 2 0.5 50 10.2 (6.3,17.1)
5 20 2 0.5 10 10.3 (5.7, 21.3)
10 10 1 0.5 - 11.1 (4.1,18.1)
10 10 1 0.5 50 10.5 (5.7, 20.5)
10 10 1 0.5 10 10.6 (5.3, 24.5)
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Summary Screening / Costs &

N* =150

| 0 | Prior Size | “expected n,.....” | “likely range”
0.5 -

| 100 (84, 117)
0.5 10 100 (67, 187)
0.5 50 100 (77, 136)
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Further Challenges &

* Inclusion of Bayesian models for accrual

* ~IG(nP, TP), where T is expected time to accrue n patients, P is confidence level for
accrual

* Eg. Gajewski BJ, Simon SD, Carlson S (2008), "Predicting accrual in clinical trials
with Bayesian posterior predictive distributions®, Statistics in Medicine 27(13); 2328-
2340.

* Inhomogeneous Poisson models
* Multiple centers, time-dependent A,

* Other recruitment models
* Using feedback mechanisms: INGARCH(1,1) process, as studied by Ferland, Latour,
and Oraichi (2006), extended by Fried and Foskianos (2010)
* N, ~Pois(B \)
A= Bo + By Aug + ayN
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Dose — Response / Expression 5

* Interest to classify potential biomarkers according to dose-expression profiles

* Any relationship
* Shape of profile

* Order constraints: higher (lower) expression as dose increases

* Monotone increases / decreases
* No parametric assumptions about dose — expression profiles

35

30 4

25

]
201
o]
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Dose — Response

(1)

Dose — Biomarker Expression Relation(s) /

e Maximum Test

* Bayesian approach

(2)

(3)

/0/\0

(4)
(5)
(6)
— " —,

7)

./0\./.

(8)

— T

(9)

(10)

.—.//

(11)

.—./.—.

(12)

-— o T

(13)

o—o—o/.

(14 — null model)

(24)

\_\.

(25)

N
\\‘\

(27)
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Dose Response Example

(] [l

(8] [w]

o ° 0
8 o °
(s] o
: ° o :

8]

g ° 2
o | o o 8
™ (s A a
o o o

8 8 8

g (=]
: i
& 0 o

(=]

a [a]
g_ o g
[ [ [ [
0 1 2 3

Dose

Otava M., Shkedy Z., Lin D., Gohlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose—Response Modeling Under Simple

Order Restrictions Using Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research, 6:3, 252-262.

Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence.

Otava M. (2013). Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions. Bayes2013, Rotterdam.
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Monotone Dose-Response

BAYER
E
R

Order-restricted alternative as an example:
e ANOVA model: Yij=pi t+ g, z—:ij~N(O,o'2), i=0,...3, j=1,..., n,

* Hoi Hg= My = My = Pz versus
Hyown: Mo = M1 2 My = U5 With at least one strict inequality

 Decompose into 2K — 1 sub-alternatives
* K=3: 7 sub-alternatives (downward trend!)

7
3. _
H13 — Uka where Hii il >t =1 =15 (0 null model) (1)
k=1

Hf,z:ﬂ0:ﬂ1>ﬂ2:ﬂ3 —— ~e . .

HY gty > > 1, = 115 g3 (4)
HYypty = 1 = gy > 1
(7)

Hs ity > =1, > 1t 6

HY, c gty > g > 1, > 11y

()

I S

\‘\’—o ’
Hf,s:ﬂ0:ﬂ1>,u2>,u3 ’_\‘\. \\‘\
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Example: Biomarker

7

>
oM=<
m
X

Assume possible downward trend.

* Re-parametrisation: Wy,

1=0

i = [T —ZIJ.BJ., 1=1,...,K with indicator variable I, andf}; >0
j

* Use priors and hyperpriors as discussed by Otava

3 .
Hypothesis/Sub -alternative  (I,,1,,I;)  g=>_1,2""

HG = g =, = 4
HY g <y = gy = g
HY, gty = g < ity = g
HY gty < < gty = 4
HYytuy = 1= 1, <
HYS gty < gy = 1, <
Higtpy = < i, <
HYcpty < <y <

(0,0,0)
(1,0,0)
(0,1,0)
(1,1,0)
(0,0,1)
(1,0,1)
(0,1,1)
(1,1,1)

j=1

0

S Y N T

7

Otava M., Shkedy Z., Lin D., Gohlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose—Response Modeling Under Simple

Order Restrictions Using Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research, 6:3, 252-262.

Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence.
Otava M. (2013). Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions. Bayes2013, Rotterdam.
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Priors and Hyperpriors 5

As priors, we have
¢ MONN(UO' O-(?)
. ,Bi~N(nﬁl., aﬁzi)I(O,A); A denotes the expected difference in the response

* [;~Bernoulli(m;)

And hyperpriors

* m;~Uniform(0,1)

* 70,1mp,~N(0,10°)

* 05,05 ~i['(1073,1073)

If we now define g = Y& , 1,211, the posterior distribution of g describes the
distribution of the monotone dose-response shapes.
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7

>
oM=<
m
X

SAS PROC MCMC

FROC MCHC dataz=markerZzZO
nbi=10000
nmc=100000
thin=50
2eed=T712015
monitor=(mad I1 IZ2 I3 betal betaZz betald g)

prior betal ~ normal (etal,var=s2Z betal,lower=0,upper=15};

ma = mud - Il*hetal* (dose in (5,50,500))
- IZ2*hetaZ* (doze in (50,500))
— I3*betald* (doze in (500}

model expression ~ normal (mu, var=s2):

beqginnodata;
g=I142*T24+4*13;

endnodata:

ron;|
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Wm-<lj

m

X

Results

(] Q
: : :
e o @
[w] a
; ° : :
(]
g ° 2
o o ) 8 8
@7 o A a
8 8 g :
o [s]
8 2
8 2 o
[s]
o < 0.7
a o 8
Q
T T T T > 0.6
] 1 2 3 E 05
2 .
(0 — null model) 0.1859 (1) 0.6058 Dose (2) 0.0546 O
09_ 0.4
*—oo—o0—0 ~ N
* S 03
0.0483 0.0359 0.0614 = '
(3) (4) (5) E
»n 0.2
5
0.0059 0.0022 0.1
(6) V- (7 :

._‘\‘\ 0 . . [ | .
g0 g1 g2 g3 g4 g5 g6 g7
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Discussion of Methods 5

* Can (easily) be extended to be used with correlated data:

® prior 52 r ~igamma (shape=0.001 , scale=0.001); #define wvariance for random effect

random r ~ normal (0, war=sZ r) subject=id monitor=(r): # random effect to account within subj corr
mu=muld -Il*betal * (dose in (5, 50, 500))

-I2*heta2 *(dose in (50, 500))
-I3*betal3¥® (dose in (500)) +r;

*  Only compound symmetry
* Effect of truncation:

* [Bi~N (nﬁi,aﬁi)l (0,4); A denotes the expected difference in the response
* Down-turn / Up-turn protection may be needed
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B
A

| oAz
Truncation R

» Effect of truncation:
,Bi"“N(nBi» aﬁzi)I(O,A); A denotes the expected difference in the response

¢ To complete the specification of the hierarchical model,
we assume the following prior distributions for the un-
known model parameters,

Ju’ﬁ ~ TN{nﬂga ru_uls 0!00)1
8§ ~TN(s.1;,',0,4) k=,1,....,K—1 (1)

Here TN(u. 02, a, b) is a truncated normal distribution
and A4 is a positive constant. The truncated distribution
improves properties of the MCMC chains and it is a priori
constrained to lie between zero and the difference in the
range of the response vector. We assume noninformative

Adictrilhntinne far tha hymarnaramatare in tha madal

Otava M., Shkedy Z., Lin D., Géhlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose—Response Modeling Under Simple
Order Restrictions Using Bayesian Variable Selection Methods. Statistics in Biopharmaceutical Research, 6:3, 252-262.

* Derive from data? Empirical Bayes approach?
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Effect of Truncation 5

0.8

0.6

Posterior Probability

Model
A H1 H15 H 45 @ 500
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Effect of Truncation (2) N

The results are highly sensitive to the specification of the truncation factor.

* |tis essential to include a sensible value of A, which should reflect an upper
limit of the expected results.

* This was investigated by O‘Hara and Sillanpaa (2009), who describe ‘The
MCMC algorithm to fit the model does not require any tuning, but when Ij = 0,
the updated value of Bj is sampled from the full conditional distribution, which
is its prior distribution. Mixing will be poor if this is too vague, as the sampled
values of Bj will only rarely be in the region where 6j has high posterior
support, so the sampler will only rarely flip from [j=0to lj = 1.’

* The truncation factor A can (should?) be estimated from the data

* Empirical Bayes approach (?)
e 2 Xxrange?
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Up-Turn Protection - Example

BAYER
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Consider the following marker, with a possible up-turn effect at the last dose:

400

300

Expression

200

O QoD@ O 000

o]

8
o
o
g8
o

o]

o]

[«1s]

Dose

Page 39 ¢ Dr. Richardus Vonk

» BASS XXII 2015

Bayer HealthCare




Up-Turn Protection — Results (1) R

Result:

NOTE :
NOTE :
NOTE :
NOTE :
NOTE :

E-_

1( 0.15%)
1 s 1899 (94.95%) 197 (95.85%)

e 68 ( 3.40%)  55( 2.75%)
9 e e 30 ( 1.50%) 28 ( 1.40%)

[ '\‘\.\‘ 2 ( 0.10%)

Starting optimization.

Tuning the proposal distribution.
Generating the burn-in =zample=.
Beginning sample generation.

w

Generating diagnostic plots.

ERROR: Unable to compute correlation statistics for variable 11.
HARNING: Unable to compute correlation statistics for variable |1. Results are zet to mizsing.
HARHNING: There iz insufficient variation in the data to create a density plot.

NOTE :
NOTE :

The data set WORK.PO5TDATA has 2000 observations and 25 variables.
PROCEDURE MCHMC used (Total process time):

real time 1:39.60

cpu time 1:38.12
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BA
Up-Turn Protection N\

* Introduce additional parameters |4, beta4, ... to reflect up-turn:

¢ ma = mud - Il*betal*(dose in (2,3,4)) - IZ*betazZz+*(dose in (3,4)) - I3*beta3* (dose in (4))
+ I4*betad* (I3=0)* (dose in (4))}

model weight ~ normal (ma, war=ss2):;
400
beginnodata;
g=I1+2*I12+4*13 +8*I4; _
endnodata; § 00
. 200 o °
* Results: : .
8
3

1 e 26 ( 1.30%)
9 -, 1701 (85.05%)

1 ~ 273 (13.65%)
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. . EER
Discussion R

* Method enables to address multiple perspectives simultaneously

* Compare with max-t tests
* Implement general down-turn / up-turn protection for the method to be useful
for biomarker selection

* (Implement permutation test)

¢ Computationally intensive!
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Implementation

* Rather high acceptance of Bayesian methods in Early Clinical Development

* Build on this also for early biomarker development / biomarker detection
* Standard “displays” / methods to ensure understanding

* High level of interaction needed iZ] B
(specification of questions, determination of priors, ... )i - el

£ g | I g€

L5 o

g 1
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